Mathématiques

Question

Bonjour, ma question a été supprimée.
J'ai un problème avec mon dm de maths qui est pour demain à rendre en ligne.
Je dois montrer que pour tout réel x,
[tex]f(x) = \frac{1}{4} - {(x - \frac{5}{2} ) }^{2} \leqslant \frac{1}{4} [/tex]

Information en plus:
Les racines de ce polynôme du second degré sont 2 et 3.
[tex]f(x) = (2 - x)(x - 3)[/tex]
[tex]f(x) = - {x}^{2} + 5x - 6[/tex]
Bonjour, ma question a été supprimée. J'ai un problème avec mon dm de maths qui est pour demain à rendre en ligne. Je dois montrer que pour tout réel x, [tex]f(

2 Réponse

  • Réponse :

    Explications étape par étape :

    Bonjour,

    Voici la réponse en pièce-jointe !

    En espérant t'avoir aidé, n'hésite pas à poser des questions si besoin.

    Image en pièce jointe de la réponse olivierronat
  • bjr

    question supprimée car illisible - mieux avec la photo de l'exo..

    f(x) = 1/4 - (x - 5/2)²

    soit

    1a) f(x) = 1/4 - (x² - 5x + 25/4)

             = -x² + 5x - 25/4+1/4 = -x² + 5x - 6

    b)

    on developpe (x-3) (2-x)

    = 2x - x² - 6 + 3x

    = -x² + 5x - 6 = f(x)

    2a) f(x) = 0

    soit (x-3) (2-x) = 0

    2 solutions x = 3 ou x = 2

    b) f(x) > - 6

    soit -x² + 5x - 6 > - 6

    donc    x (-x + 5) > 0

    x        - inf            0          5          + inf

    x                 -        0     +         +

    -x+5            +              +    0    -

    final            -        0     +    0    -

    soit f(x) > -6 sur ]0 ; 5[

    et

    c) f(x) ≤ 1/4

    donc  1/4 - (x - 5/2)² ≤ 1/4

    soit - (x-5/2)² ≤ 0

    vrai puisque qu'un carré est tjrs positif donc - (x-5/2)² toujours ≤ 0